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FOREWORD

The influence of finite wall impedance effects on the cyclotron maser

instability of a hollow electron beam is investigated. The stability analysis is

carried out within the framework of the linearized Vlasov-Maxwell equations,

assuming that the beam thickness is much less than the radius of the beam. The

formal dispersion relation for azimuthally symmetric electromagnetic perturbations

is obtained, including the influence of an arbitrary value of wall impedance.

One of the most important features of this analysis is that, for a purely

resistive wall, the growth rate of instability is substantially reduced by

allowing even a very small amount of resistivity. Moreover, the range of axial

wave numberscorresponding to instability increases rapidly as the wall resis-

tivity is increased. Cyclotron maser stability properties in a dielectric

loaded waveguide is also investigated. It is shown that by an appropriate

choice of the dielectric constant E and thickness of dielectric material, the

bandwidth of instability can be increased more than twicl of that for a plain

conducting waveguide.

B.F. DE SAVAGE

By direction
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I. INTRODUCTION

In recent years, there has been increasing interest in the electron

1-9cyclotron maser instability in connection with intense microwave

generation. 10-13 For the most part, previous theoretical analyses of

this instability have been carried out without including the influence of

finite impedance effects of a waveguide which has been previously

assumed to be a perfect conductor. Although this is a reasonable assump-

tion in the present experiments, we expect significant modification to

the stability behavior when a small amount of an artificial resistivity

is introduced into the waveguide wall in order for a stable operation of

the microwave amplification. Moreover, to increase the bandwidth of

microwave amplification, a dielectric loaded waveguide is more desirable

than a pure conducting waveguide. However, in the dielectric loaded

waveguide, the impedance of wall is purely reactive. In this paper, we

investigate the influence of finite wall impedance effects on the cyclo-

tron maser instability of a hollow electron beam in a waveguide with an

arbitrary impedance Z.

Equilibrium and stability properties are calculated for the specific

choice of electron distribution function [Eq. (3)].

f0(H,Pe@ P)=(wN/42mc2)6( - 1)6(pz-p)6(P -Po)

where H=ymc2 is the energy, P e is the canonical angular momentum, Pz is

the axial momentum, wc=eBo /mc is the electron cyclotron frequency, and

N is the number of electrons per unit axial length. The stability ana-e

lysis in this paper is carried out within the framework of the linearized

Vlasov-Maxwell equations, assuming that the beam thickness is much less

than the equilibrium radius R of the beam and that v/1<1, where v is0

Budker's parameter.

7
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The formal stability analysis for azimuthally symmetric electromag-

netric perturbations (a/a8=0) is carried out in Sec. II, including the

important influence of finite wall impedance Z, which in Qeneral is an

arbitrary function of the eigenfrequency w and axial wavenumber k. The

dispersion relation of cyclotron maser instability in Eq. (20), when com-

bined with Eqs. (17) and (18), constitutes one of the main results of

this paper and can be used to investigate stability properties for a

broad range of system parameters. In this regard, we emphasize that Eq.

(20) is derived with no a priori assumption that the electron beam is

tenuous, or that the impedance of wall is independent of , and k

In Sec. III, sum of magnetic wave admittances b_ + b+ in Eq. (20)

can be significantly simplified by making use of tenuous beam limit

(v/,-0). In the absence of a beam, the vacuum transverse electric (TE)

mode dispersion relation is given by Eq. (26)

(W2 /c 2-k 2)R2=X2 (w,k)w on

where c is the speed of light in vacuo, R is the radius of impedancew

wall, xon is the nth root of Z=J 1 (x on)/x onJ o(x on), and J (x) is the

Bessel function of the first kind of order i. The root x is calculated
on

numerically for a given complex value of wall impedance Z. The detailed

dependence of the root x in Eq. (26) on the eigenfrequency w and axialon

wavenumber k is particularly important in connection with the gain and

bandwidth of a microwave amplification by the cyclotron maser instability.

In Sec. IV, a detailed analytic and numerical investigation of the

cyclotron maser instability is carried out for a wall impedance indepen-

dent of the eigenfrequency w and axial wavenumber k (i.e., Z/3w=0,

3Z/3k=O). Defining the wall impedance Z by Z=1Zjexp(-iO), stability pro-

perties of cyclotron maser instability are investigated for a broad range

8
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of the magnitude ,Z. and the phase angle ;. One of the most important

features of this analysis is that, for a purely resistive wall charac-

terized by ¢=90', the growth rate is substantially reduced by introducing

even a very small amount of resistivity into the wall. This feature

represents a general tendency for all radial mode number n. Moreover,

the range of the normalized axial wavenumber kc/. corresponding toc

instability increases rapidly as the resistivity of wall is increased.

Cyclotron maser stability properties in a dielectric loaded wave-

guide are investigated in Sec. V, assuming that the impedance of dielec-

tric material is purely reactive. It is shown that stability properties

of cyclotron maser instability exhibit a sensitive dependence on the

dielectric constant c and thickness of dielectric material. By an appro-

priate choice of e and thickness of dielectric material, the bandwidth of

instability can be increased more than twice of that for a plain con-

ducting waveguide. Moreover, dielectric material reduces the radial

wavelength of the waveguide mode, thereby significantly modifying the

nature of perturbations. The influence of self-dielectric effects of an

electron beam itself on the stability behavior is investigated. However,

for a low density beam (i.e., v/<<0.005) with small transverse velocity,

self-dielectric effects are insignificant.

9/10
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II. LINEARIZED VLASOV-MAXWELL EQUATIONS

The equilibrium configuration consists of a hollow relativistic

electron bedm propagating parallel to a strong, externally applied mag-

netic field B The radius of the electron beam is denoted by Ro, and

a finite impedance wall is located at radius r=R . Cylindrical polarW

coordinates (r,6,z) are introduced. In the present analysis, we assume

that

&/ -'4 , (1)

where V=N e 2/mc2 is Budker's parameter,e

N =27TRcdrr no(r) , (2)
e 0 e

is the number of electrons per unit axial length, n (r) is the equilibriume

electron density, c is the speed of light in vacuo, -e and m are the

electron charge and rest mass, respectively, and ?mc2 is the characteris-

tic electron energy in the laboratory frame. Consistent with the low-

intensity assumption in Eq. (1), we also neglect the influence of equili-

brium self-field.

In the present article, we investigate the stability properties

associated with the beam distribution function

wN

fO(H,Ppz c e 6(y_)Mpz-p)6(pP (3)
e 42 mc 2

whee Hym2=(24c2p21I/2
where H=ymc =(M c +c p ) is the total energy, Pz-pz is the axial

canonical momentum, Ps=r[P6 - (e/2c)rB ] is the canonical angular momentum,

w= eB /mc is the nonrelativistic electron cyclotron frequency,
c 0

P = -(e/2c) (R -rB , (4)
0 o L

is the canonical angular momentum of an electron with Larmor radius,

2_ 2 -2_ 2 1/2
r -L=[(l2-)c /W -(p/mwc)2I , (5)

C i

F - ,''- T -- -- -~o .. . . -, .. . ... . .. . . . . . . . ... ...11.
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and p is a constant. For a notational convenience in the subsequent

analysis, we also introduce the definitions B =p/?mc and 6,=(1-3 -/2) / 2 .
z z

The equilibrium properties of an electron beam described by Eq. (3) can

be found in the previous literatures.
5 ,7

In the subsequent stability analysis, we make use of the linearized

Vlasov-Maxwell equations of azimuthally symmetric perturbations (/3e=0)

about a tenuous, hollow beam equilibrium described by Eq. (3). We adopt

a normal-mode approach in which all perturbations are assumed to vary

with time and z according to

5 (x,t)=1P(r)exp[i(kz-wt)]

where Imw2O Here, w is the complex eigenfrequency and k is the axial

wavenumber. The Maxwell equations for the perturbed electric and magne-

tic field amplitudes can be expressed as

V X E(x)=i(W/c)B(x)

V x (I/i)B(x)=(4w/c)J(x)-i(w/c)t E(x) , (6)

where c and j are the dielectric constant and permeability, respectively,

of the background material, E(x) and B(x) are the perturbed electric and

magnetic fields, respectively, and

J(x)= -efd3p V f (x,p) (7)~ ~ e ~ ~

is the perturbed current density. Note that E=V=l in vacuo. In Eq. (7),

fe(x,p)=ef _dT exp(-i T)E(x)+ ()] fo (8)
e 

_ c ap, e

is the perturbed distribution function, T=t'-t, and the particle trajec-

tories x'(t') and p'(t') satisfy dx/dt'=v" and dp-/dt "= -ev" x B 6 /c,
S~ o~z

with "initial" conditions x'(t'=t)=x and v'(t'=t)=v.

12
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Makiny use of Eq. (6), it is straightforward to show that

B (r)= -(kc/w)E 0(r)

B z(r)= -i(c/wr) d(rE0 )/3r] , ()

and

1 + (ue)J 4iw J (10)

4r Lr dr c

where

22 22=,) w /c - , (I )

1I., is the azimuthal component of perturbed electric field, and P and B

are the radial and axial components, respectively, of the perturbed mag-

netic field. The field equations (9) and (10) represent the transverse

electric (TE) waveguide modes. For the cyclotron maser instability, it

is well established 1 '9 that the beam cyclotron resonance mode couples

much more strongly with the TE waveguide mode than the transverse magne-

tic (TM) waveguide mode. In this regard, the present analysis is restric-

ted to the TE waveguide mode.

The perturbed azimuthal electric field E (r) is continuous across

the beam inner and outer boundaries r=R 1 and r=R 2. Integrating Eq. (10)

from r=R -6 to r=R 2+6 and taking the limit 6-0+, we obtain the approxi-

mate result1

B (R )-B (R drJ (r)  (12)
z 2 z 1 dr erR1

where 4(R-) denotes lim i $(R +6), and use has been made of the hollow
2 6-*0 2-

beam approximation (Thickness of the beam is much less than the beam

radius R ). For convenience in the subsequent analysis, we introduce0

the normalized magnetic wave admittance1 b + defined at the inner and

outer surfaces of the electron beam by

13

-- U .
- r ' -

.. .. . ...
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2 (13)b -iw/p 1CR )B zR )/E aR
b+=i(W/PI2CRo)Bz(R2)/E (Ro ,

1 10 z 2 eQ0

where

2='2/c2 -k 2 4

Moreover, we also aofine the wave impedance Z(w,k) of the wall as

Z(-,k)= -i(c/wR )E (R )/B (R ) , (15)w W z w

where R is the radius of an impedance wall.w

Since the perturbed current density vanishes in the vacuum region

outside the beam, it is obvious that the solution to Eq. (10) in the

vacuum region is given by

A J1 (p1 r), r<R 1

Ee (r)= (16)

B J1 (p1r)+C NI(p1 r), R2<r<R,

where J (P1 r) and N; (p1 r) are Bessel functions of the first and second

kind, respectively, of order Z. Making use of Eqs. (15) and (16), and

the thin beam approximation (R I-R 2-R o ), we express the sum b_+b+ of the

wave admittance in Eq. (13) as

[2g( )/] CR /R F)w o

b o( R /Rw)[J 1 (CR0/Rw)+g(C)N( R/R) ]  (17)

where &=pIR, and

0()= N ) 0( )  Z-ji-

Substituting Eq. (13) into Eq. (12), we obtain

4 2rwR2

(b_+b) -i c22R^(o dr J (r) (19)
c R E CR

14
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After some tedious but straightforward algebraic manipulation with F

(7), (8) and (9), we obtain the dispersion r=lation of the ryclotr-n

maser instability
2

__ 2_k c
b +b+=  ( 2 2

2?2 k (w-kB c- 2 '(0z c

where w =W /I is the electron cyclotron frequency on the laboratory frame,c c

and use has been made of the assumption y2<<l. For a detailed deriva-

tion of Eq. (20), we urge the reader to review the previous literatures.
1' 3 ,5

In the remainder of this article, we investigate the stability properties

of Eq. (20) for various wall impedance Z on Eq. (18).

15/16
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III. LIMIT OF A TENUOUS BEAM

To simplify the expressions for the sum b +b of the wave admittance
- +

in Eq. (17), it is useful to consider the limit where the beam density

is very tenuous, i.e.,

1A / -0 (21)

In this absence of a beam, the vacuum TF; mode dispersion relation is

Z=J ([)/ido(,) , (22)

where Z(w,k) is the wave impedance of the wall [Eq. (15)) and

=(X 2/c2 -k2 )1/2R . Substituting Eq. (22) into Eq. (18), we can simplify

Eq. (17) by

RWj ( ) 2 1 (( (23
b_+b += [R I;0 /) *Z_ IJ~(3

For a convenience in future analysis, we define the nth root of Eq. (22)

by

&=x on(w,k)=x r(w,k)-i x i (w,k) (24)

for a specified wall impedance

Z=IZjexp(-i0)=Z +iZ. (25)r i

For a very tenuous beam (Eq. (21)], it is evident from Eqs. (22) and

(24) that

(W 2/c 2-k 2 )R 2 = x 2 (w,k) (26)
w on

is a good approximation to the dispersion relation in Eq. (20). The

right-hand side of Eq. (20) describes the beam-produced modifications

to the vacuum dispersion relation (26). We remind the reader that the

nth root x is a function of the eigenfrequency w and axial wavenumber
on

17

4' _ __ _ _ __ ____
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k in general. For an impedance with a small magnitude satisfying 1Zi<<1,

we obtain

x o [l+IZiexp(-it)] (27)
onon

from Eqs. (22) and (25). Therefore, the vacuum waveguide mode for zero

wall impedance can be expressed as

(w 2/c 2-k 2)R 2= 2  (28)
w on

where a on is the nth root of J (a on)=0, which is independent of w and k.

Figure 1 is the contours of constant phase angle and magnitude

IZI of the function Z=J (x on)/x onJo (x on) in the plane of the root x on

x -ix. for (a) n=l and (b) n=2. We note from Fig. 1 that the nth rootr 1

x of Eq. (22) approaches to a and the magnitude of wall impedance ison on

reduced to zero. On the other hand, the nth root x approaches to Bon on

by increasing the magnitude IZI to infinity. Here 0 is the nth rooton

of Jo (B on)=O. We also emphasize that for specified values of IZI and 9,

the root xon =x -ix. is determined from Fig. 1. For example, for IZI=0.3,

p=90* and n=l, we find from Fig. 1 that x =3.12 and x.=0.82. Obviously,r

the root x of Eq. (22) is a very complicated function of the wall impe-on

dance Z.

The dependence of the nth root x on the eigenfrequency w and axialon

wavenumber k is particularly important in connection with the gain and

bandwidth of a microwave amplification by the cyclotron maser instability.

Shown in Fig. 2 are schematic drawings of the curve w=(k
2c2+a 2 c2/R2 ) I/2

on w

corresponding to zero wall impedance and the curve w=(k2 c 2+x
2 c2/R2) / 2

on w

corresponding to an arbitrary wall impedance. The straightline =kB c+wz c

is the cyclotron resonance mode. It is important to note from Fig. 2

that the interaction region of cyclotron resonance mode with vacuum wave-

guide dispersion relation is increased substantially by an appropriate

46 - .18
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choice of the wall impedance (x ). In this regard, we conclude thaton

the growth rate or the bandwidth of cyclotron maser instability can be

considerably improved when the functional dependence of the wall impe-

dance on w and k is matched with the cyclotron resonance mode in a broad

range of k space. However, a detail investigation of wall impedance is

required. Previous studies 14 indicate that a proper waveguide structure

provides a necessary wall impedance. The influence of nonuniform wall

impedance on cyclotron maser instability is currently under investigation

by authors for a broad range of physical parameters and waveguide struc-

tures. As a simple example, we present, in Sec. V, the cyclotron maser

instability in a dielectric loaded waveguide.

19/20
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IV. CYCLOTRON MASER INSTABILITY IN A WAVEGUIDE WITH

CONSTANT WALL IMPEDANCE

The cyclotron maser stability properties of a hollow electron beam

in a vacuum waveguide with general impedance are investigated in this

section, assuming that impedances of the wall are independent of the

eigenfrequency w and the axial wavenumber k, i.e.,

Z/ w=0, )Z/k=0 (29)

Taylor expanding Eq. (23) about (w 2/c 2-k 2)R 2=x with Eq. (29), it is
w on

straightforward to show that b_+b + can be approximated in leading order

by

R 2 R 2J (X )-J (x (J x 2
b +b = w o on )J 2 on 2 -2 on (3
b + 22 fRoI - 2 (30)

on 1 ono w w

Substituting Eq. (30) into Eq. (20) and making use of Eq. (24), we obtain

the approximate dispersion relation

2 22
2 x 2 V2 J (xnRo/R) 2 22

_k2 _ on 1 1 ono w w-kc (31)
2 R2  ^ 2  j2 (x )-J (X )J (x ) (w-k8 c-w )2

w w 1 on o on 2 on z c

for a tenuous thin beam. Stability analysis of the dispersion relation

in Eq. (31) is carried out in the remainder of this section for a broad

range of physical parameters.

In order to investigate the influence of wall resistivity on stability

behavior, the analysis of the dispersion relation in Eq. (31) is carried

out for a wall impedance with a small magnitude satisfying IZI<<I. In

this limit, we choose the wall radius R according tow

R = c/w y (32)w on c z

2 2-
for the present purposes. Here y is defined by y = (1-82) Equationzz z

(32) ensures that the group velocity of the vacuum waveguide mode for

j _ - -,. . . ... . ., :21
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1Zj=0 is equal to the beam velocity for a certain k value. 3 Making use

of Eq. (32) and defining the normalized Doppler-shifted eigenfrequency

X=(w-ka c-w U) (33)z cc

it is straightforward to show that the dispersion relation in Eq. (31)

can be expressed as(Ccc____
cC c X on/

SJon 2 x R/Rw)

z -, 2 (x )-J (x )J (x

on J on o on 2 on

The normalized growth rate mi=lmx and Doppler-shifted real frequency

S= Rex have b,'en calrcl-ted numerically from Eq. (34) for v=0.002, 1=1.i18,r

=0.4 and several different values of wall impedance Z. For specified

values of Z, the root x is determined from Fig. 1. For example, weon

find from Fig. 1 that Xon=(x rxi)=(3.82, 0.167) for Z=(IZI, f)=(0.045,

900).

Although the present experiments of the cyclotron maser instability

are carried out in a lossless cylindrical conductor, it is necessary to

investigate the stability properties for a resistive waveguide, since an

artificial resistivity of the wall is sometimes required for a stable

operation of the microwave amplification. In this regard, we investigate

the dispersion relation in Eq. (34) for a pure resistive wall characterized

by 0=900. Shown in Fig. 3 are plots of (a) the normalized growth rate X,

and (b) the normalized Doppler-shifted real frequency Xr versus kc/w c

obtained from Eq. (34) for n=l, R /R =0.5, 0=900, and several values of

JZJ. In Fig. 3(b), xr is plotted only for the ranges of kc/w corres-
r C

ponding to instability (xi50). Several features are noteworthy from Fig.

3. First, the maximum growth rate decreases as the magnitude IZI of wall
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impedance is increased. The growth rate is substantially reduced by

introducing even a very small amount of resistivity into the wall. As

evident from Eq. (34) and Fig. i, this feature represents a general ten-

dency for all radial mode numbers n. Second, the range of kc/i.. corres-
c

ponding to instability increases rapidly as the resistivity of the wall

is increased. This mechanism somehow broadens the bandwidth of microwave

amplification. Third, for lossless conductor, the Doppler-shifted real

frequency increases abruptly when the wavenumber k approaches to the

k-space boundary corresponding to marginal stability (..=0). However,
1

resistivity of the wall levels the Doppler-shifted real frequency [Fig.

3 (b)].

The dependence of stability properties on phase angle 4 of the impe-

dance is illustrated in Fig. 4 where the normalized growth rate Xi is

plotted versus kc/w for n=l, R /R w=0.5, IZI=0.05 and several differentc o

phase angles 4. Since the plot of the Doppler-shifted real frequency

has a form similar to that of Fig. 3(b), it is not shown in Fig. 4.

Evidently from Fig. 4, the maximum growth rate occurs at the phase angle

0=1800. For this particular magnitude of impedance (IZI=0.05), the growth

rate of instability is reduced sharply as the phase angle of impedance

is reduced to zero.

To investigate the cyclotron maser instability for a purely reactive

15
impedance characterized by 0=00 or *-1800, we analyze the dispersion

relation in Eq. (31) for different values of x on with x.=0. In order

to maximize the growth rate and efficiency of microwave amplification

we choose
3

R w=x onc/w c, R /R w=a 11/x , (35)

where a 11 is the first root of JI (L1 )0 and J (x)=dJ /dx. Making use

of Eqs. (33) and (35), we can show that the dispersion relation in

23
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Eq. (31) is expressed as

oo
I 2 ,,. \2 2

+ \Xo n/ J1 (x on)-J0 (x on)(x =0 (36

Figure 5 presents plots of the normalized maximum c;rowth rat So11 i i iC)

and R /R (broken line) versus x =x obtained from )Iqs. (30) and -A)O W on r

respectively, for v=0.002, =1.1l8, and .=0.4. Numerical calculation

indicates that the maximum growth rate occurs at the wavenumber k -0.15f, /c
c

for the range 2<x <4 as shown in Fig. 5. We note from Fig. 5 that the- on-

growth rate of instability is substantially increased by reducing the

value x to two. Moreover, it may be possible that further increase ofon

the growth rate can be attainable by reducing the value x less than twoon

and by arranging suitably the beam radius so that electrons never hit the

wall [see Eqs. (31) and (36)].
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V. CYCLOTRON MASER INSTABILITY IN A DIELECTRIC LOADED WAVE'JUIDE

In this section, we investigate the cyclotron maser stability pro-

I),rties of a hollow electron beam in a dielectric loaded waveguide. As

illustrated in Fig. 6, a hollow electron beam with radius R is propaga-0

tinq through a cylindrical dielectric material with its inner radius R .w

A grounded cylindrical conducting wall is located at radius R . In

qeneral, the permeability ,; of a dielectric material differs from unity

by only a few parts in 105 (Pl for paramagnetic substances, .,1 ror dia-

magnetic substances). Therefore, we make the approximation 0=l in the

calculation in this section. In this regard, the perturbed azimuthal

electric field E (r) and axial magnetic field B (r) are continuous across8 z

the a -.ectric boundary r=R . From Eq. (10), we obtainw

Dr- r Dr L 2 Ee=0 ,(37)

inside the dielectric material. Here the parameter p2 is defined by

2 2 2 2
p2 E/c -k (38)

The solution to Eq. (37) can be expressed as

E (r )=A [J l (p r )-J I (W N (p r )/N l (01]  (39)

2 2_ 2 1/2
where A is an arbitrary constant and C=R p2 =R (wC/c -k )

I/ 2  Obviously

Eq. (39) satisfies the boundary condition E (r=R c)=0. Substituting Eq.

(39) into Eq. (9) and making use of the boundary conditions at r=R w , we

obtain the wave impedance Z(w,k)

Z(w,k)= 1 1 1 1 (40)
[Jo0 (n)Nl )-J l (C)No (n) ]

from the definition in Eq. (15). In Eq. (40), the parameter n is defined

2 2_ 2 1/2
by n=RwP2=Rw (w E/c -k ) . Note from Eq. (40) that the wall impedance

of dielectric loaded waveguide is a function of eigenfrequency w and
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axial wavenumber k. Since the dielectric constant c is always greater

than unity, we note from Eqs. (14) and (38) that p2 'p. We therefore

conclude from the definitions =p 1 R, n=p 2R and ,=p 2R that

R /R =n/ (41)
w c

and

(42)

Equation (20), combined with Eqs. (17), (18) and (40), constitutes a com-

plete dispersion relation of cyclotron maser instability in a dielectric

waveguide.

Previous study indicates that the maximum growth rate occurs at

the sum of wave admittance b_+b+C O characterized by the vacuum TE mode

dispersion relation [Eq. (22)] in the region 0<r<R . Making use of the

definitions =PlRw, n=P2 w P2Rc
, we can express the vacuum TE mode

dispersion relat-on on Eq. (22) as

W /c 2-k 2=x2 /R2= 2 /R 2=(/n) 2/R , (43)
on w w c

where the parameter is related to n by

Z=J 1 (WO M= Jl ( l) N l()-Jl1 (C)NI1 (q )  (4

n[Jo(n)Nl ( C) - J l ( ) N o0 (n) ]

for a specified value of parameter C. It is instructive to examine

Eq. (43) in the limit c-l. Making use of C=n, and Eq. (44), we have

(W 2/c 2-k 2)R 2= 2 from Eq. (43) for E=l.
c on

Figure 7 is plots of the impedance Z versus parameter (broken lines)

and Z versus parameter n (solid lines) obtained from Eq. (44) for C=4, 5

and 6. The scales in horizontal line in Fig. 7 represent both the para-

meters E and n. The solid curves are plotted only for the ranges n satis-

fying Eq. (42). Note that for specified values of and t, the parameter

n is determined from Fig. 7. For example, for E=2, we find from Fig. 7
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that -,=2.175 for -,4, '1=3.3 for -:5 and -=4.35 for "F cor.z3. . to

the wave impedance Z=1.25 at surface of a dielectric materia], In this

particular example (7=2), values of parameters '-I,' and R r :.lven
w c

by (I1!/, R /R )=(3.68, 0.54) for ]=4, (3.13, ).66) for "=5 and (2.7L,
w c

0.73) for ,=6. From the definitions of -, and -, we obtair, (.-)=

2 2 922
c (1- /') /R which unmistakably indicates that the eigenfrequency of

c

vacuum waveguide mode depends on the dielectric constant c. However,

the maximum growth rate of cyclotron maser instability of electron beams
0 -) k ) 1)

characterized by ,'1 occurs at the cigenfrequency - satisfying -' cz

therby approximating n 21 p2 /p by

2/2
=i / .(45)

In this regard, we can approximately determine the dielectric constant

E from Fig. 7 and Eq. (45) for the cyclotron maser instability. As an

example, for =2, we obtain c=1.19 for C=4, E=2.62 for C=5, and £=4.75

for C=6. We also emphasize that the impedance Z on Eq. (40) is purely

reactive [i.e., Z =0 where Z. is defined in Eq. (2S)] for the eigenfre-1

2 2 2
quency w satisfying w >k c

In order to complete the stability analysis of cyclotron maser

instability on a dielectric loaded waveguide, it is required to investi-

gate numerically the dispersion relation in Eq. (20), where no a priori

assumption is made that the beam is very tenuous. However, use is made

of the fact that the magnitude of Doppler-shifted eigenfrequency Iw-k8 c-z

Wic is much less than the electron cyclotron frequency (i.e., 1w-kzC-wcl<<-Wc).

Evaluating the parameters C, n, C, and the wave admittance b_+b+ at w=wo
=

kBz c+wc, the dispersion relation in Eq. (20) can be approximated by

Wc ! (b+b) X3+(b +b+) X + ()R kC/ ](kc/c  =0 (46)
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wqrq =: ( ), and the normalized Doppler-shifted eigenfrequency x is

in Eq. (33). The normalized growth rate Xi=lmX has been calculated

nmerically from Eq. (46) for a broad range of system parameters kc/wc, R wc/c,

R ./c and dielectric constant E. In this numerical calculation, it hascc

been assumed that the beam parameters are v=0.002, ?=i.118 and B =0.4.

To maximize the growth rate of instability, we also assumed 3 Ro/c=a1 1 ,

where :11 is the first root of Jl (l l)=0.

Fig. 8 illustrates influence of the self-dielectric effects of an

electron beam on the cyclotron maser instability. Shown in Fig. 8 are

plots of normalized growth rate X. versus kc/u obtained from Eq. (34)1 c

(broken line) for x = and x R /R =a , and from Eq. (46) (solidon= 01 Xono/Rw 11

line) for E=l, Rwwc/c=Rcwc/c=aol/yz=3.75. Obviously from Fig. 8, the

growth rate calculated from the self-consistent dispersion relation in

Eq. (46), including the self-dielectric effects of beam itself, is

slightly greater than the growth rate from the approximate dispersion

relation in Eq. (34). However, for a low density beam with small trans-

verse velocity (8 2<1) as shown in Fig. 8, self-dielectric effects of

beam itself is insignificant.

Stability boundaries in the parameter space (Rcwc/c, c) are illus-

trated in Fig. 9 for several values of R w /c ranging from 2.2 to 2.8.

In Fig. 9, tl-e solid curves correspond to the stability boundaries

obtained from Eq. (46) for 1=1.118, a =0.4. For a given value of R w /c,wc

the region of (R c wc/c, E) parameter space below the curve corresponds to

absolute stability for any arbitrary values of normalized axial wavenumber

kc/uc, whereas the region of paremeter space above the curve corresponds

to instability for some values of wavenumber kc/u . Several points arec

noteworthy from Fig. 9. First, for general values of the parameter R u /c,

the stability boundaries converge to the common value Rcwc/c:3.6 for E=l

28
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corresponding to vacuum dielectric constant. In fact, the stability

properties of Eq. (46) are the same for any arbitrary values of R W /c

for c=l. Second, for a given radius of dielectric material, the value of

dielectric constant c required for instability increases rapidly to infinity

as the radius of conducting wall (R c /c) apprc ches to the inner radius

of dielectric material (R -/c). Third, obviously for a given radius of

conducting wall, instability occurs even at small values of dielectric

constant as the value of parameter R w ' /c is decreased.
W C

The dependence of stability properties on dielectric constant C is

further illustrated in Fig. 10, where the normalized growth rate Xi is

plotted versus E for R c /c=3.75, R W /c=2.4, kc/w =0.2, y=1.118, ,=0.4

and v=0.002. In these particular parameters, the maximum growth rate

Xi=0.02 4 occurs at the dielectric constant E=. The range of c corres-

ponding to instability occurs repeatedly as the value of dielectric con-

stant c is increased to infinity. For example, in Fig. 10, the system

is unstable for the dielectric constant c satisfying 1<E<2.9 (first

radial harmonic number n=l) and 10.2<c<13.2 (second radial harmonic num-

ber n=2). In this value of conducting radius (R w/c=3.75), without a

dielectric material the system can be unstable only for first radial

harmonic number n=l. Since a dielectric material reduces significantly

the radial wavelength of the waveguide mode, it is possible to have high

radial mode perturbations for a large dielectric constant.

2
Examining carefully on the cubic equation (46) and noting (l+kcz / c ) >

2
(kc/W ) in a typical cyclotron maser instability, we conclude from Eq.c

(46) that for instability, (b+b +) >0, or (_+b+)W 1-l for (b_-b +) <0.
0 0 0

Moreover, in order to have a smooth unstable spectrum with a broad band-

width, it is required for the ratio a to satisfy
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b +b+
.. d (b+b ). , (47)

c - + 0

for a considerable range of k space when the beam is very tenuous (v<<0.01).

For present purposes, to illustrate the influence of dielectric

material on instability bandwidth, we present in Fig. 11 plots of (a)

(b +b ) , (b) the ratio a and (c) the normalized growth rate X. versus- +C. I
0

kc/ obtained from Eqs. (17), (18), (40) and (46) for R w /c=2.4, *=1 .118,c wc

B =0.4, v=0.002 and several pairs of parameters (R w /c, c). Several±cc

important features are noteworthy in Fig. 11. First, the matched geo-

metric configuration (R w/c, L)=(3.75, 1) is most unstable. However,

the range of k space corresponding to instability is narrow. Second, a

slightly unmatched configuration (R w /c, E)=(3.75, 2) is unstable for

a broad range of k space, with a considerably reduced growth rate.

Unfavorably, the growth rate for (R u /c, £)=(3.75, 2) is a sharply

changing function of the wavenumber k. Evidently from Fig. 11(b), the

ratio a for ( Wc/c, £)=(3.75, 2) is not satisfying Eq. (47). Third, it

is noted from Fig. 11(b) that the ratio a for (R w /c, ')=(3, 6) satisfies
cc

Eq. (47), thereby resulting in a smooth unstable spectrum with a broad

bandwidth on k space. Although the growth rates for this case are

slightly reduced from those values of (R u /c, )=(3.75, 1), the range of

k space corresponding to instability for this case is almost twice broader

than that for (R u /c, F)=(3.75, I). In this regard, the unstable

spectrum of (Rc c/c, £)=(I, 6) is most desirable for a communicational

application.

We conclude this section by emphasizing that stability properties of

cyclotron maser instability in a dielectric loaded waveguide exhibit a

sensitive dependence on the dielectric constant e and thickness of

dielectric material. It has been shown that, by an appropriate choice of
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E and thickness of dielectric material, the bandwidth of instability

can be increased more than twice of that for a plain conducting wave-

guide, slightly reducing the growth rate of instability. Moreover,

dielectric material reduces the radial wavele.-gth of the waveguide mode,

thereby significantly modifying the nature of perturbations.

31/32
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VI. CONCLUSIONS

In this paper we have investigated the influence of finite wall

impedance effects on the cyclotron maser instability of a hollow electron

beam in a waveguide with an arbitrary impedance Z. The stability analy-

sis has been carried out within the framework of the linearized Vlasov-

Maxwell equations, assuming that the beam thickness is much less than the

equilibrium radius R of the beam. The formal stability analysis for0

azimuthally symmetric electromagnetic perturbations (3/3@=0) has been

carried out in Sec. II, including the influence of finite wall impedance

Z. In Sec. III, properties of the vacuum TE mode dispersion relation

have been investigated in the absence of a beam. A detailed analytic and

numerical investigation of cyclotron maser instability has been carried

out in Sec. IV for a wall i Jedance independent of the eigenfrequency and

axial wavenumber. One of the most important features of this analysis is

that, for a purely resistive wall, the growth rate is substantially

reduced by introducing even a very small amount of resistivity into the

wall. Moreover, the range of kc/w c corresponding to instability increases

rapidly as the resistivity of wall is increased. Cyclotron maser stability

properties in a dielectric loaded waveguide have been investigated in

Sec. V. It has been shown that stability properties of cyclotron maser

instability exhibit a sensitive dependence on the dielectric constant E

and thickness of dielectric material. By an appropriate choice of C and

thickness of dielectric material, the bandwidth of instability can be

increased more than twice of that for a plain conducting waveguide.
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